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Abstract

T raditional recommendation tech-
niques in recommender systems 
mainly focus on improving rec-

ommendation accuracy. However, per-
sonalized recommendation, which 
considers the multiple needs of users 
and can make both accurate and diverse 
recommendations, is more suitable for 
modern recommender systems. In this 
paper, the task of personalized recom-
mendation is modeled as a multi-objec-
tive optimization problem. A multi- 
objective recommendation model is 
proposed. The proposed model maxi-
mizes two conflicting performance met-
rics termed as accuracy and diversity. 
The accuracy is evaluated by the proba-
bilistic spreading method, while the di-
versity is measured by recommendation 
coverage. The proposed MOEA-based 
recommendation method can simulta-
neously provide multiple recommenda-
tions for multiple users in only one run. 
Our experimental results demonstrate 
the effectiveness of the proposed algo-
rithm. Comparison experiments also in-
dicate that the proposed algorithm can 
make more diverse yet accurate recom-
mendations.

I. Introduction
With the rapid development of science 
and technology, we human beings have 
entered an era of information explosion. 

People are inundated with enormous 
amount of information nowadays. Accord-
ingly, it becomes an urgent problem to 
find out useful information for us effi-
ciently. Recommender systems (RSs) [1], 
which use statistical and knowledge dis-
covery techniques to provide recommen-
dations automatically, 
are considered to be the 
most promising tools to 
alleviate the overload of 
information. Ever since 
their advent, RSs have 
attracted considerable 
attention in both theo-
retical research and 
practical applications 
[2]. Researches on RSs 
cover various topics, 
including movies [3], 
books [4], songs [5], 
jokes [6], tourism [7], 
web search [8], and so on. Moreover, RSs 
are now a key component of many 
e-commerce sites, such as Youtube.com, 
Yahoo.com and Amazon.com.

Usually, the major aim of traditional 
RSs is to maximize accuracy as much as 
possible in predicting items which are 
likely be appreciated by a particular user. 
For example in October 2006, the online 
DVD rental company Netflix announced 
the Netflix Prize [9], a competition for 
movie recommendation. The competi-
tion challenged researchers to develop 
RSs that could beat the company’s RS, 
Cinematch in accuracy. The grand prize 
of $1,000,000 was awarded to the winner 

of the contest, whose recommendation 
accuracy was 10% higher than that of 
Cinematch. However, as discussed in re-
cent studies [10]–[14], only considering 
the accuracy of recommendations may 
not be enough to suggest the most rele-
vant items to users. Other performance 

metrics, such as the di-
versity, should also be 
taken into account to 
meet users’ multiple re-
quirements. It can be 
observed that a high 
accuracy of recom-
mendations can be eas-
ily obtained by safely 
recommending popu-
lar items to users [15]. 
However, it will un-
doubtedly lose recom-
mendation diversity. 
Likewise, to recom-

mend diverse items to users may lead to a 
decrease in recommendation accuracy, 
since diversity and accuracy are two con-
flicting metrics for RSs. As a conse-
quence, a pressing challenge for RSs is 
how to develop personalized recommen-
dation techniques that can generate rec-
ommendations with both high accuracy 
and diversity.

To achieve a proper balance between 
accuracy and diversity, a variety of recom-
mendation techniques have been devel-
oped. Zhang et al. [14] modeled the trade-
off between accuracy and diversity as a 
quadratic programming problem and 
developed several strategies to solve this 
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optimization problem. A control parame-
ter should be used to determine the 
importance of diversification in the rec-
ommendation lists. Zhou et al. [16] pro-
posed a hybrid recommendation algo-
rithm, which combines Heat-spreading 
(HeatS) algorithm specifically to address 
the challenge of diversity and probabilistic 
spreading (ProbS) algorithm to focus on 
accuracy. Note that the hybrid algorithm 
is produced by using a basic weighted lin-
ear aggregation method. As a result, the 
weight parameter should be appropriately 
tuned so as to make accurate and diverse 
recommendations. Adomavicius et al. [15], 
developed a number of item ranking tech-
niques to generate diverse recommenda-
tions while maintaining comparable levels 
of recommendation accuracy.

In this paper, we propose a general 
multi-objective recommendation model 
to address the challenge of striking a bal-
ance between accuracy and diversity. The 
model considers two conflicting objec-
tives. The first one is the measurement of 
recommendation accuracy, which can be 
estimated by an accuracy-based recom-
mendation technique, and the other one 
is a diversity metric. The task of person-
alized recommendation is thus modeled 
as a multi-objective optimization prob-
lem (MOP). A multi-objective evolu-
tionary algorithm (MOEA) is then per-
formed to evolve the population to 
maximize these two objectives. Finally, a 
set of different recommendations can be 
provided for users.

ProbS [17], as a simple yet effective 
recommendation technique, is adopted 
as the accuracy estimator in this paper. 
Coverage, which measures the ability of 
a recommendation algorithm to suggest 
distinct items. Low coverage indicates 
that only a small fraction of items in the 
system are recommended, whereas high 
coverage means that the algorithm is 
more likely to suggest diverse recom-
mendations [18]. From this viewpoint, 
coverage can be considered as a diversity 
metric [19]. NSGA-II [20] is applied to 
optimize the two conflicting objectives 
simultaneously so as to make recom-
mendations to users. For convenience, 
the proposed MOEA-based recommen-
dation algorithm is termed as MOEA-

ProbS. Note that recommendations to 
multiple users are encoded in one indi-
vidual. Therefore, multiple recommenda-
tions can be provided simultaneously in 
one run for multiple users. To reduce the 
computational complexity, a clustering 
technique is firstly introduced to divide 
users into several clusters. Then, the pro-
posed algorithm can simultaneously pro-
vide recommendations for all users in 
each cluster. To investigate the perfor-
mance of the proposed MOEA-ProbS, 
we will compare it with some widely 
used recommendation techniques.

The main contributions of this paper 
are as follows.
1)	A general multi-objective recom-

mendation model is proposed to 
balance recommendation accuracy 
and diversity.

2)	Different from traditional recom-
mendation techniques, the proposed 
algorithm can simultaneously pro-
vide multiple recommendations for 
multiple users in only one run.

3)	 Experimental results show that the 
proposed algorithm can provide a set 
of diverse and accurate recommenda-
tions. Specially, the coverage of rec-
ommendations is greatly improved, 
which is a promising property for 
RSs.

4)	 A clustering technique is employed to 
improve the computational efficiency.

The remainder of this paper is orga-
nized as follows. In Section II, some 
backgrounds including the problem def-
inition of recommendation, some pre-
liminaries of multi-objective optimiza-
tion, the related work on RSs and the 
introduction to ProbS are presented. 
Section III describes the proposed 
MOEA-based recommendation algo-
rithm in detail. In Section IV, experi-
mental studies are presented. Finally, 
conclusions are given in Section V.

II. Background

A. Problem Definition of 
Recommendation
Generally, the problem of recommenda-
tion can be formalized as follows. 
Assume that set Users contains all the 
users in a system, and set Items contains 

all possible items that can be recom-
mended. A rating matrix R is used to 
measure the preferences of users to 
items. For instance, the preference of a 
user i Users!  to an item Items!a  is 
measured by ( , ),R i a  which is often a 
non-negative integer or a real number 
within a certain range [21]. Usually, each 
user rates few items and each item is 
rated by few users in practice, so the rat-
ing matrix R is rather sparse. The first 
step of recommendation techniques is to 
predict the unknown ratings in R. Then, 
items will be recommended to users 
based on the obtained ratings. More 
specifically, one or a set of items a  that 
maximize ( , )R i a  will be selected as the 
recommendation to user i  i.e.,

	 Users, ( , ) .arg maxi R i
Items

6 ! a a=
!a

� (1)

In most RSs, only a single-criterion 
value is considered. However, the prefer-
ence of a particular user may depend on 
more than one criterion. The additional 
information provided by multi-criteria 
ratings can improve the quality of rec-
ommendations [22].

B. Multi-Objective Optimization
Multi-objective optimization is to opti-
mize a vector of functions [23]

	 ( ) ( ( ), ( ), , ( ))min x x x xF f f fm T
1 2 f= �(2)

where [ , , , ]x x x xd1 2 f ! X=  is called 
the decision vector, and X  is the  
D-dimensional decision space.

Without loss of generality, we con-
sider the minimization problem as in (2), 
since the maximization problem can be 
easily transformed into the minimized 
form. Given two decision vectors 
xA ! X and ,xB ! X  it is said that xA  
dominates xB  (written as x xA B(  if 

( ) ( )x xf fi A i B#  for all , , , ,i m1 2 f=  and 
( ) ( ) .x xF FA B!

A vector of decision variables x ! X 
is called a Pareto-optimal solution if 
there is no x ! X)  such that .x x()

The set of all the Pareto optimal 
solutions is called the Pareto set, which 
can be defined as

	 { | , } .PS x x x xJ7! ! (X X= ) ) �(3)
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The image of the Pareto set under 
the objective function space is called the 
Pareto front, defined as

	 { ( )| }.PF PSx xF != � (4)

The goal of an MOEA is to find a set of 
non-dominated solutions approximating 
the true Pareto front.

C. Related Work on RSs
As described in [21], recommendation 
techniques can be classified into three 
major types: content-based filtering, col-
laborative filtering (CF) and hybrid 
methods. Content based filtering meth-
ods [24] recommend items to a target 
user based on the content of items 
already preferred by the target user. 
Thus, items with the most similar con-
tent will be suggested to the target user. 
Unlike content-based methods, CF 
methods [25] do not require any con-
tent information. They recommend 
items to a given user based on informa-
tion provided by those users having sim-
ilar preferences with the given user. 
Hybrid methods combine different rec-
ommendation techniques in order to 
take advantages of them. A plenty of 
hybrid recommendation methods have 
been proposed and proved to produce 
better results in real applications [26]–
[28]. A survey focused on hybrid RSs 
can be found in [29].

Although many efforts have been 
dedicated to generating accurate RSs 
[30]–[33], some studies [10]–[12] have 
shown that other metrics, such as the 
diversity, contribute as importantly as the 
accuracy to the success of RSs. Some 
new recommendation methods were 
developed to increase individual diversity 
[13], [14], which is measured by an aver-
age dissimilarity between all pairs of rec-
ommended items to a given individual 
user. In contrast to individual diversity, 
aggregate diversity of recommendations 
across all users was also investigated [15], 
[34], [35]. In [36], the notion of “topic 
diversification” was introduced to balance 
the diversity of recommendations across 
different topics. A different measure of 
item diversity was proposed to assess the 
extent to which the same items are rec-

ommended to users over and over again 
[37]. In [38], the authors designed a nov-
elty measure, which assumes that an item 
with lower popularity is deemed to have 
higher novelty. By hypothesizing that the 
degree of user’s surprise is proportional to 
the estimated time used for searching the 
item, a new metric for item novelty was 
introduced in [39]. A thorough review of 
extensive measures used for evaluating 
RSs is presented in [40].

Real-world optimization problems 
often involve a number of characteris-
tics, some of which may be conflicting, 
resulting in MOPs. So far, there have 
been a variety of mathematical pro-
gramming techniques that can be used 
to solve MOPs [23]. However, these 
techniques may have several limitations 
[41]. For example, most of them require 
the differentiability of the objective 
functions and the constraints. In addi-
tion, many of them are susceptible to 
the shape of the Pareto front of the 
MOP. They may be invalid when the 
MOP has a concave or disconnected 
Pareto front. Moreover, they usually 
generate only one solution from one 
run. Therefore, many runs are necessary 
to generate multiple solutions. Different 
from traditional optimization tech-
niques, MOEAs can generate many 
Pareto optimal solutions in one single 
run. Also, they are less susceptible to the 
shape or continuity of the Pareto front, 
and can be used for solving MOPs 
without good mathematical properties. 
Since the pioneering work of Schaffer 
[42], a number of MOEAs have been 
developed and applied in many fields 
[43]. The typical representatives of 
MOEAs include Strength Pareto Evo-
lutionary Algorithm (SPEA) [44] and its 
improved version (SPEA2) [45], Non-
dominated Sorting Genetic Algorithm 
(NSGA) [46] and its improved version 
(NSGA-II) [20], Multi-objective Parti-
cle Swarm Optimization (MOPSO) 
[47], Multi-objective Evolutionary 
Algorithm Based on Decomposition 
(MOEA/D) [48] Non-dominated 
Neighbor Immune Algorithm (NNIA) 
[49] and Hypervolume Estimation 
Algorithm for Multi-objective Optimi-
zation (HypE) [50].

Moreover, some new studies have 
been reported to use MOEAs to improve 
the capacity of RSs. Demir et al. [51] 
employed MOEAs for clustering web 
user sessions, and then generated web 
recommendations based on the obtained 
clusters. Their experimental results show 
that the use of MOEAs can improve the 
accuracy of recommendations. Rana et al. 
[52] proposed a multi-objective evolu-
tionary clustering method based on tem-
poral features for dynamic RSs. Tyagi et 
al. [53] developed a multi-objective parti-
cle swarm optimization algorithm for 
association rule mining in the collabora-
tive filtering framework. Ribeiro et al. 
[54] designed a Pareto-efficient hybrid-
ization recommendation approach, where 
MOEAs are used to optimize a vector of 
weights assigned to different recommen-
dation methods.

D. ProbS
The ProbS method [17] is suitable for 
RSs without explicit ratings, i.e., each 
element ( , )R i a  in rating matrix R is 
either 0 or 1, denoting that user i  has 
not collected or collected item a  
respectively. Explicit ratings can be easily 
mapped to this form, albeit losing some 
information in the process [19]. The 
whole process of ProbS is composed of 
two steps. First, a user-item bipartite 
network is constructed according to the 
relationship between users and items. 
Second, the initial resource placed on 
each item is equally distributed to all 
neighboring users, and then redistribut-
ed back to those users’ neighboring 
items in the same way. The resource 
allocation process in a simple bipartite 
network is illustrated in Fig. 1. After two 
resource-distribution steps, a column 
normalized transition matrix can be 
obtained according to (5), where M  is 
the total number of users, and ki  
denotes the degree of item node ,i  i.e., 
the number of edges connected to node 
.i  The element wab  in this matrix repre-

sents the fraction of the initial resource 
of b  transferred to .a

	 .w k k
r r1

i

i i

i

M

1

=ab
b

a b

=

/ � (5)
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Then, the ratings of items can be 
obtained by

	 f w f
N

1

=a ab b

b=

l / � (6)

where N  is the total number of items. 
Finally, items are recommended to users 
according to the obtained ratings. To fur-
ther understand ProbS, please refer to [17].

III. The Proposed Moea-Based 
Recommendation Algorithm
In order to balance recommendation 
accuracy and diversity, the recommen-
dation problem is modeled as an MOP. 
In this paper, NSGA-II [20] is adopted 
as the MOEA to solve the modeled 
MOP, due to its robustness and effec-
tiveness. In this section, we describe the 
proposed MOEA-based recommenda-
tion algorithm in detail, including the 
clustering method, the two objectives, 
the individual representation and the 
genetic operators.

A. User Clustering
To reduce the computational complexi-
ty, a clustering technique is used to split 
a large number of users into several clus-
ters. Since the users from different clus-
ters have different habits and preferences, 
diverse recommendations can be easily 
provided for these users by RSs. In con-
trast, the users belonging to the same 
cluster are similar, and therefore similar 
items tend to be recommended to these 
users. The aim of the proposed algo-
rithm is to improve the diversity of rec-
ommendations to these similar users. In 
particular, the quality of recommenda-
tions can be improved by using a clus-
tering technique sometimes. Several 
experiments are conducted to show the 
impact of clustering in Section IV-C4.

As discussed in [55], there exist many 
clustering techniques, such as k-means, 
fuzzy c-means (FCM), and hierarchical 
clustering. In addition, community-based 
methods [56], which are able to mine po-
tential relationship between different users, 
can be also used for clustering. In this 
paper, the k-means clustering method is 
employed. The performance of clustering 
will be influenced by the used similarity 

strategy. Here we use 
the cosine index [21] 
to measure the simi-
larity sij  between 
two users i  and ,j  
which is defined as

 | || |s r r
r r

ij
i j

i j$
=  (7)

where ri  and r j  are 
rating vectors given 
by i  and j  on items, respectively.

B. The Two Objectives
In this paper, two conflicting objectives 
are considered. The first one measures 
the accuracy of recommendations. In 
fact, it is impossible to compute the true 
preferences of users in the training stage. 
Therefore, the estimated ratings of items 
are used. For a user i  and an item a  the 
predicted rating of a  given by i  is .pria  
For all the users in one cluster ,S  the 
predicted rating is defined as:

	 PR
pr

S L
i

L

i S 1

#
= ! a

a=
//

� (8)

where S  is the number of users in ,S  
and L  is the length of the recommenda-
tion list.

The second one is to measure the 
diversity of recommendations. There are 
several diversity metrics [19], such as 
inter-user diversity, intra-user diversity, 
and coverage. Due to its simplicity, cov-
erage is used in this paper. The specific 
definition is given as follows:

	 CV N
Ndif= � (9)

where Ndif  is the number of different 
items in the recommendation lists for 
the users in the same cluster, and N  is 
the total number of items. Obviously, 
within a certain level of accuracy, a 
higher value of coverage indicates a bet-
ter recommendation.

C. Individual Representation
Directly, items recommended to a user 
are encoded by a vector of integer val-
ues, each of which represents the corre-
sponding item number. Since we aim at 
providing recommendations for all the 

users in the same cluster, the chromo-
some is encoded by a matrix. Assuming 
that L  items will be recommended to 
each user and there are K users in the 
cluster, the scale of the matrix is thus 

.K L#  An illustration of the encoding 
method is given in Table 1, where rows 
represent users and columns represent 
items. Usually, RSs will not recommend 
one item to one user twice. This means 
that duplicate alleles are not allowed in 
the same row. In addition, for a given 
user, there is no need to suggest items 
rated by the given user in the past. 
However, different users often rate dif-
ferent items, leading to different search 
spaces of decision variables. Hence, the 
modeled optimization problem can be 
considered as a complex discrete MOP.

D. Genetic Operators
The genetic operators used in our algo-
rithm include crossover and mutation, 
which are performed to produce new 
solutions. In this paper, we adopt the 
uniform crossover. Since one item is not 
allowed to be suggested to one user 
twice, an additional operation should be 
executed to avoid generating invalid 
solutions. The procedure of the cross-
over operator can be described as fol-
lows. Firstly, the same items from two 
parents are identified and propagated to 
the child. Then, the remaining alleles 
perform crossover. A random number in 

1
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0

0
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5/24

19/24
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Figure 1 Illustration of the process of ProbS in a simple bipartite 
network. The squares denote items and the circles denote users. The 
target user is denoted by the red circle.

Table 1 Illustration of chromosome 
encoding.

Item 1 Item 2 · · · Item L

User 1 5 3 13

User 2 16 27 8

· · · · · ·

User K 19 5 7
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[0, 1] is produced for each remaining 
position in the child. If the number is 
larger than 0.5, the child receives the 
corresponding allele from the first par-
ent. Otherwise, it receives the allele from 
the second parent. An illustration of the 
crossover operator is shown in Fig. 2. 
Note that the crossover operator is per-
formed row by row and then the two 
parent matrices complete crossover.

The mutation operator is applied to 
a single individual. If one allele in the 
parent matrix is to be mutated, another 
available item is randomly selected from 
the item set to replace the initial one. An 
item available means that the item does 
not exist in the parent. In this way, the 
mutation operator can always generate 
feasible solutions.

IV. Experimental Studies

A. Experimental Settings
To evaluate the performance of the 
proposed algorithm, we use a classical 
benchmark data set, Movielens. The 
Movielens data set can be downloaded 
from the web site of GroupLens Re-
search (http://www.grouplens.org/). 
This data set contains 943 users and 
1682 movies. Here, we consider a bina-
ry rating system (“like” or “dislike”). 
Since Movielens uses a rating system 
(ratings 1-5), we preprocess the data set 
with the same method applied in [17]. 
An item is considered to be liked by a 
user, if the user rated this item at least 3. 
Then we randomly select 80% of the 
data as the training set, and the remain-
ing data constitutes the probe set. The 
training set is treated as known infor-
mation for generating recommenda-
tions, while the probe set is used to 
evaluate the performance of RSs. In  
order to accelerate the search process, 
the users are divided into several clus-
ters. In our experiments, we divide the 
users into four clusters, thus generating 

four different rela-
tively small data 
sets. The properties 
of these data sets 
are presented in 
Table 2, where the 
sparseness of each 
data set is defined 
as the number of 
links divided by 
the total number 
of user-object pairs 

[16]. A sparse data set indicates that only 
a few items are rated by users.

As is known to all, some common 
parameters in the MOEA need to be 
predetermined. The specific values of 
the parameters used in the computa-
tional experiments are listed in Table 3. 
All experiments are implemented in 
Matlab on an Intel(R) Core i3 com-
puter with 2.13GHz CPU and 4.00GB 
memory. To obtain statistical results, 30 
independent runs are performed for 
each data set.

B. Performance Metrics
Precision is widely used to measure the 
accuracy of recommendations [19]. For 
a given user ,i  precision ( )P Li  is 
defined as 

	 ( )
( )

P L L
d L

i
i

= � (10)

where ( )d Li  is the number of relevant 
items, which are in the recommendation 
list and also preferred by user i  in the 
probe set. L  is the length of the recom-
mendation list. The obtained mean preci-
sion of all users can reveal recommenda-
tion accuracy of RSs generally.

Coverage denotes the ability of a rec-
ommendation algorithm to recommend 
diverse items. It is considered as one of 
the two conflicting objectives in our 
proposed algorithm. Here we also adopt 
it as a performance metric to measure 
the diversity of recommendations.

Novelty is used to measure how well 
RSs recommend unknown items to 
users. To measure the unexpectedness of 

Parent1

Child1

Parent2

Child23 4 7 1 5

3 4 2 1 5 3 7 6 5 4

5 4623

Figure 2 Illustration of the crossover operator. Only the positions 
without slash perform crossover. Two generated random numbers 
are 0.1 and 0.8, respectively.
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Figure 3 Results of MOEA-ProbS on Movielens 1. (a) Plots of final non-dominated solutions with the highest hypervolume. (b) Plots of final solu-
tions in the accuracy-coverage space (c) The error-bar of hypervolume metric of population among 30 independent runs with different generations.

Table 2 Properties of the test data sets.

Data set Users Items Sparsity

Movielens 1 200 1682 1.39 # 10-2

Movielens 2 258 1682 5.17 # 10-2

Movielens 3 227 1682 2.38 # 10-2

Movielens 4 258 1682 6.89 # 10-2
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the recommended items, we use self-
information. Given an item ,a  the 
probability to collect it by a random-
selected user is / ,k Ma  where M  is the 
total number of users, and ka  is the 
degree of item a  (i.e., the popularity of 
item a ) [19]. The self-information of 
item a  is thus:

	 .logN k
M

2=a
a

` j � (11)

A user-relative novelty is obtained by 
calculating the average self-information 
of items in the target user’s recommen-
dation list. Then the mean novelty 

( )N L  over all users can be obtained 
according to:

	 ( )N L ML N1

Oi

M

1 L
i

=
!

a

a=

// � (12)

where OL
i  is the recommendation list 

of user i  and L  is the length of the rec-
ommendation list.

C. Experimental Results
1) Effectiveness of MOEA-ProbS: In this 
subsection, we present the experimental 
results of MOEA-ProbS on the four data 
sets. To show the effectiveness of the pro-
posed algorithm, the final non-dominated 
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Figure 4 Results of MOEA-ProbS on Movielens 2. (a) Plots of final non-dominated solutions with the highest hypervolume. (b) Plots of final solu-
tions in the accuracy-coverage space (c) The error-bar of hypervolume metric of population among 30 independent runs with different generations.
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Figure 5 Results of MOEA-ProbS on Movielens 3. (a) Plots of final non-dominated solutions with the highest hypervolume. (b) Plots of final solu-
tions in the accuracy-coverage space (c) The error-bar of hypervolume metric of population among 30 independent runs with different generations.
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solutions with the highest hypervolume1 
for each data set are displayed. Since each 
solution represents recommendations to 
all the users in the same cluster, the accu-
racy and coverage of these recommenda-
tions can be calculated to examine the 
quality of the solution. The final solutions 

1Hypervolume is an often-used performance metric for 
multi-objective optimization problems, which can mea-
sure both convergence and diversity of the solutions. 
Moreover, it is the only unary indicator that is strictly 
monotonic with Pareto dominance. That is to say larger 
values of hypervolume indicate better solutions [57]. 

of MOEA-ProbS in the accuracy-cover-
age space are then plotted. In addition, to 
observe the convergence trend of the 
MOEA, we record the hypervolume val-
ues of the non-dominated solutions 
among 30 independent runs with differ-
ent generations. Since the two objectives 
are non-negative obviously, the reference 
point for computing hypervolume is set 
to the origin.

From Figs. 3-6, it can be concluded 
that there exists a tradeoff between recom-

mendation accuracy and diversity. After a 
certain number of generations, the pro-
posed MOEA-ProbS can generate a set of 
recommendations. Note that the accuracy 
and coverage of different recommenda-
tions determined by a set of non-domi-
nated solutions can also form a non-domi-
nated front. However, there may exist 
some dominated points in the accuracy-
coverage space. The reason is that the pre-
dicted rating is not exactly equal to the 
true accuracy of recommendations. For 
example in Fig. 3 (b), the points denoted 
by green left triangle represent the domi-
nated solutions. According to the error 
bars of hypervolume metric in Figs. 3-6, 
the proposed MOEA-ProbS is robust and 
effective, which can be proved further by 
the box plots in Fig. 7.

2) Comparison results: To show the  
advantages of the proposed MOEA-
ProbS, we compare it with several well-
known recommendation techniques, 
including CF [58] and matrix factoriza-
tion method (MF) [59], which can pro-
duce only one solution. In addition, a 
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Figure 7 Statistical values of hypervolume for four data sets. (a) Movielens 1. (b) Movielens 
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Figure 8 Final non-dominated solutions of CF, MF, MOEA-ProbS and ProbS+HeatS in the accuracy-coverage space. (a) Movielens 1. (b) Moviel-
ens 2. (c) Movielens 3. (d) Movielens 4.
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hybrid recommendation algorithm [16] 
is selected as a comparative algorithm, 
which combines an accuracy-based 
method (ProbS) and a diversity-focused 
method (HeatS). For convenience, the 
hybr id algor ithm is denoted by 
ProbS+HeatS. A weight parameter 

[ , ]0 1!m  is used to incorporate these 
two algorithms with complete-
ly different features. Different 
from searching for one optimal 
m  through extensive experi-
ments in [16], we generate a 
number of m  evenly sampled in 

, .0 16 @  Then the experiments 
with different m  are conducted 
to get a set of recommenda-
tions. A non-dominated front 
can be obtained by eliminating 
the dominated points in the ac-
curacy-diversity or accuracy-
novel ty space. For f a i r 
comparison, the number of dif-
ferent m  is equal to the size of 
population used in our MOEA.

In the experiments, three performance 
metrics are considered, namely, accuracy, 
coverage and novelty. As displayed in Figs. 
8 and 9, the solutions of CF and MF are 
dominated by those of MOEA-ProbS on 
all the data sets, which demonstrates the 
effectiveness of our algorithm. Fig. 8 
shows that MOEA-ProbS is able to 

generate multiple recommendations with 
higher coverage and similar accuracy 
compared to ProbS+HeatS. This is a 
promising property, especially for online 
business. Diverse items can be discovered 
to stimulate the purchase desire of cus-
tomers. However, MOEA-ProbS is beat-
en by ProbS+HeatS according to the 

accuracy metric. The reason is 
twofold. First, the performance 
of our algorithm is mainly in-
fluenced by the introduced ac-
curacy-based recommendation 
technique. Hybrid recommen-
dation methods, which have 
been proved to provide more 
accurate recommendations [29], 
can be employed in our model. 
Second, the large-scale search 
space may cause difficulty. In 
order to improve the search 
ability, MOEAs should be elab-
orately designed and some local 
search methods can be taken 
into account. According to the 
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Figure 9 Final non-dominated solutions of CF, MF, MOEA-ProbS and ProbS+HeatS in the accuracy-novelty space (a) Movielens 1. (b) Movielens 
2. (c) Movielens 3. (d) Movielens 4.

0
0.1

0.2
0.3

0 0.1 0.2 0.3 0.4 0.5

0
2
4
6
8

10

AccuracyCoverage

N
ov

el
ty

MOEA-ProbS
ProbS+HeatS

Figure 10 Final non-dominated solutions of MOEA-ProbS and 
ProbS+HeatS in the accuracy-novelty-coverage space on Movielens 1.



60    IEEE Computational intelligence magazine | february 2015�

values of hypervolume report-
ed in Table  4, the proposed 
MOEA-ProbS gains a slight su-
periority over ProbS+HeatS in 
terms of accuracy and coverage.

However, Fig. 9 shows our 
deficiency in generating novel 
recommendations compared 
to ProbS+HeatS. This is due 
to the use of HeatS, which is 
inclined to suggest less popular 
items. In fact, high novelty can 
be obtained by recommending 
items as less popular as possible 
to users. Particularly, the value 
of novelty reaches the maxi-
mum, when only HeatS works 
( 0m = ). Nevertheless, it will 
result in a low accuracy, which 
can be observed by the 
extreme point close to y-axis 
in Fig. 9. In contrast, the accu-
racy of recommendations 
obtained by MOEA-ProbS is 
well maintained. Note that the 
performance of ProbS+HeatS 
is determined by the parame-
ter ,m  which varies with the 
data sets. However, it is diffi-
cult and computationally 
expensive to choose a suitable 
parameter m  in the training 
stage. Moreover, several runs 
need to be performed to get 
multiple recommendations. 
Different from ProbS+HeatS, the pro-
posed MOEA-ProbS can make multiple 
recommendations in one run without 
additional parameters. To improve the 
novelty of recommendations obtained 
by our algorithm, a good way is to 
introduce the novelty as the third objec-
tive to be optimized, which will be dis-
cussed in the following subsection.

In addition, the computational time 
in seconds (Time) required by each 
algorithm is given in Table 4, where the 
execution time of ProbS+HeatS is the 
total time used by multiple runs to get 
multiple recommendations. It is evident 
that ProbS+HeatS and MOEA-ProbS 
are much more time-consuming than 
CF and MF. For ProbS+HeatS, the 
combination of two algorithms increases 
the computational burden, and the 

implementation of multiple runs brings 
about expensive time cost further. Due 
to the complexity of the modeled MOP, 
some computational cost is needed for 
our algorithm to search for a set of opti-
mal solutions. Note that the computa-

tional time of ProbS+HeatS 
for selecting suitable parameter 
m  is not involved. The effi-
ciency of the proposed 
MOEA-ProbS is thus compa-
rable to that of ProbS+HeatS.

3) Discussions of Objectives: 
In this subsection, we consider 
the extended three-objective 
model, by introducing the 
novelty as the third objective. 
The maximum number of 
generation is set to be 6000, 
and other parameters remain 
the same as in Table 3. The 
results of MOEA-ProbS and 
ProbS+HeatS on Movielens 1 
are displayed in Fig. 10. It can 
be observed that the solutions 
of ProbS+HeatS in the three-
dimensional space form a 
curve, while those of MOEA-
ProbS form a two-dimen-
sional surface. This reveals the 
effectiveness of the extended 
three-objective model. Similar 
results are also observed for 
other data sets. In addition, to 
test the performance of rec-
ommendation novelty, the 
results of bi-objective and 
three-objective models in the 
accuracy-novelty space are 
presented in Fig. 11. It is obvi-
ous that the novelty of recom-

mendations is greatly improved by 
introducing the third objective. How-
ever, little effect is obtained for the solu-
tions with a relatively high precision. 
Moreover, it will inevitably increase the 
computational cost in the three-objec-
tive model.

4) Impact of the clustering method: To 
investigate the impact of the clustering 
method, several experiments are car-
ried out in this subsection. Firstly, we 
use CF and ProbS to test the rational-
ity of using the clustering method. 
More specifically, we compare the 
results obtained by CF and ProbS with 
those by their variants using the clus-
tering method, denoted as CF_C and 
ProbS_C, respectively. The k-means 
clustering method is also applied. The 
detail results, including the accuracy 
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Table 3 Parameter settings of the 
algorithm.

Parameter Meaning Value

L the length of 
the recom-
mendation list

10

NP the size of 
population

100

pc the crossover 
probability

0.8

pm the mutation 
probability

/L1

gmax the number of 
generations

3000
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and the computational time required 
by the related algorithms, are reported 
in Table 5. Note that the last column 
in Table 5 displays the computational 
time of the related algorithms run on 
the complete Movielens data set. For 
CF_C and ProbS_C, the time pre-
sented in the last column is the sum of 
time used on the four data sets. From 
Table 5, it can be concluded that the 
cluster ing method can reduce the 
computational time greatly. Actually, 
the computational time required by 
CF is more than the sum of time used 
by CF_C on the four data sets. Similar 
performance is also observed for 
ProbS. In particular, the accuracy of 
CF is improved for all the four data 
sets by using the clustering method. 
Since CF is based on the similarity of 
users, more effective information from 
similar users in the same cluster are 
available to produce better results. For 
ProbS, by using the clustering method, 
the accuracy is improved on Movielens 
2 and Movielens 4 while slightly 
decreased on other data sets.

Next, we compare the proposed 
MOEA-ProbS with its variant without 
cluster ing (MOEA-ProbS-noC). 
MOEA-ProbS-noC is tested on Moviel-
ens 3 with a computational time limit, 
which is set to be twice the sum of time 
required by MOEA-ProbS on the four 
data sets. As shown in Fig. 12, MOEA-
ProbS-noC performs slightly better than 

MOEA-ProbS in terms of coverage 
metric. It is easy to understand that as 
more users participate in rating items, 
more items will be found and recom-
mended to users, leading to higher cov-
erage. Nevertheless, the accuracy of rec-
ommendations becomes worse by using 
the clustering method.

V. Conclusions
In this paper, we developed a general 
multi-objective recommendation 
model to simultaneously optimize rec-
ommendation accuracy and diversity. 
The accuracy was predicted by the 
ProbS method while the diversity was 
measured by recommendation cover-
age. NSGA-II was adopted to solve the 
modeled MOP for personalized rec-
ommendation. To reduce the computa-
tional cost, we used the k-means 
clustering technique to split the users 
into several relatively small clusters. The 
proposed MOEA-based recommenda-
tion algorithm can make multiple rec-
ommendations for multiple users in 
only one run. The experimental results 
show that the proposed algorithm can 
provide a set of diverse and accurate 
recommendations for users. In addition, 
the experiments for the cluster ing 
method indicate that it can improve 
the algorithmic efficiency.

However, recommendation accuracy 
of our proposed algorithm can still be 
improved. Our future work will focus on 

a more in-depth analysis of RSs, includ-
ing the following aspects: 1) hybridizing 
other recommendation techniques to 
further improve the performance of the 
proposed algorithm; 2) developing spe-
cialized MOEAs to solve the optimiza-
tion problem quickly and robustly; and 
3) applying the proposed algorithm to 
large-scale data sets.
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